Powder Metallurgy High-Speed Steel $ASP^{\mathbb{R}}$ 2017

ASP® 2017 is a grade with high toughness, wear resistance and excellent grindability for coldwarm and hot applications.

STANDARDS

- > EN 10027-1: PMHS 3-3-1-8
- > EN 10027-2: 1.3288

DELIVERY HARDNESS

- > Typical soft annealed hardness is 260 HB
- > Cold-drawn and cold-rolled material is typically 10-40 HB harder

Safety datasheet available

С	Cr	Мо	W	Со	V	Nb
0.80	4.0	3.0	3.0	8.0	1.0	1.0

APPLICATIONS

- > Cold work tools
- > Plastic injection moulds, broaches and injector pins
- > Machine components and rolls
- > Warm- and hot-work applications
- > Taps
- > Bi-metal saws
- > Roughing end mills

HEAT TREATMENT

- > Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- > Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- > Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitizing at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- > Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature < 25°C between temperings.

GUIDELINES FOR HARDENING

FORM SUPPLIED

- > Round bars
- > Flat & square bars

Available surface conditions: drawn, ground, hot-worked, peeled, rough machined, cold-rolled, hot-rolled.

PROCESSING

ASP® 2017 can be worked as follows:

- > machining (grinding, turning, milling)
- > polishing
- > hot forming
- > electrical discharge machining
- > welding (special procedure including preheating and filler materials of base material composition)

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g/cm ^{3 (1)}	8.0	7.9	7.8
Modulus of elasticity kN/mm ^{2 (2)}	235	210	190
Thermal expansion ratio per °C (2)	-	12.1x10 ⁻⁶	12.7x10 ⁻⁶
Thermal conductivity W/m°C (3)	20	27.5	29
Specific heat J/kg°C (2)	420	510	600

- (1) Soft annealed
- (2) Hardened 1180°C and tempered 560°C, 3 x 1 hour
- (3) Hardened 1100°C and tempered 560°C, 3 x 1 hour

IMPACT TOUGHNESS

Hardening temperature in °C

Original dimension Ø14 mm Tempering 3 x 1 hour at 560°C

4-POINT BEND STRENGTH

Hardening temperature in °C

Original dimension Ø 6 mm Tempering 3 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

CCT CURVE

Continuous cooling transformation curve

Hardening temperature 1180°C

