CHEMICAL COMPOSITION

С	Cr	Мо	W	Со	V
0.90*	4.2	5.0	6.4	-	1.8
* 0.85 for strips				5	SAFETY DATA SHEET SDS: A

* 0.85 for strips

STANDARDS

Europe: HS 6-5-2 USA: AISI M2 Germany: 1.3343 • Sweden: SS 2722

France: AFNOR Z85WDCV6.5.4.2

Japan: JIS SKH51 • UK: BM2

DELIVERY HARDNESS

- Typical soft annealed hardness is 250 HB
- Cold drawn and cold rolled material is typically 10-40 HB harder

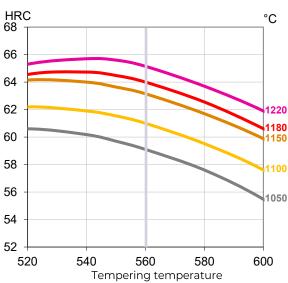
DESCRIPTION

EM2 is a medium-alloyed high speed steel which has a good machinability and a good performance and is used in a wide variety of applications.

APPLICATIONS

- Twist drills
- Reamers
- Milling cutters
- Taps & dies
- Broaches
- Knives
- Saws
- Cold work tools

FORM SUPPLIED


- Drawn wire
- Wire rod
- Round bars
- Flat bars
- Strips
- Sheets
- Discs
- Bi-metal edges
- Square bars

Available surface conditions: drawn, ground, peeled, hot rolled, cold rolled, turned.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C per hour down to 700°C, then air cooling.
- Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness.
- 2 tempers at 560°C are recommended with at least 1 hour holding time each time.

GUIDELINES FOR HARDENING

Hardness after hardening, quenching and tempering 2x1 hour

Tool	Hardening	Tempering
Single-edge cutting tools	1220°C	560°C
Multi-edge cutting tools	1180-1220°C	560°C
Cold work tools	1050-1150°C	560°C

PROCESSING

E M2 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

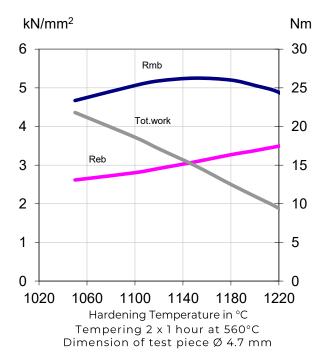
GRINDING

During grinding, local heating of the surface, which can alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

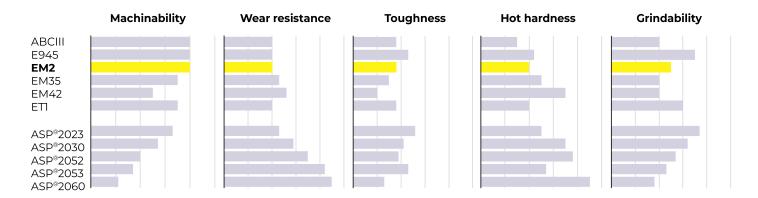
The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES


PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g /cm³	8.1	8.1	8.0
Modulus of elasticity kN/mm²	225	200	180
Thermal expansion ratio per °C	-	12.1x10 ⁻⁶	12.6x10 ⁻⁶
Thermal conductivity W/m°C	24	28	27
Specific heat J/kg °C	420	510	600

IMPACT TOUGHNESS



4-POINT BEND STRENGTH

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

