Powder metallurgy HSS

CHEMICAL COMPOSITION

С	Cr	Мо	W	Со	V	S
2.30	4.2	7.0	6.5	10.5	6.5	0.23

SAFETY DATA SHEET SDS: B

STANDARDS

- Europe: HS 6-7-6-10
- Germany: 1.3241

DELIVERY HARDNESS

• Typical soft annealed hardness is 345 HB.

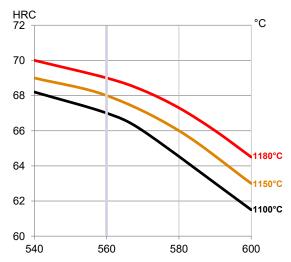
DESCRIPTION

ASP® 2078 is a highly alloyed grade for applications needing high hardness, high hot hardness and wear resistance. Sulphur addition gives it an improved machinability.

APPLICATIONS

- Hobs
- Shaper cutters
- Milling cutters

FORM SUPPLIED


Round bars

Available surface conditions: ground, peeled, rough machined.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature (25°C) between temperings.

GUIDELINES FOR HARDENING

Tempering temperature in °C Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

ASP® 2078 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

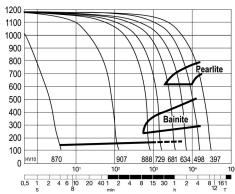
GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

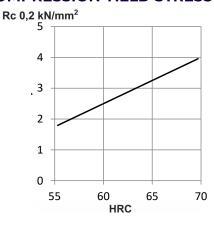
The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

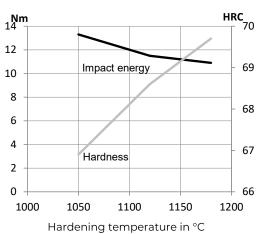

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C	
Density g /cm³ (1)	7.9	7.9	7.8	
Modulus of elasticity kN/mm² (2)	250	222	200	
Thermal expansion ratio per °C (2)	-	10.6x10 ⁻⁶	11.1x10 ⁻⁶	
Thermal conductivity W/m°C (2)	24	28	27	
Specific heat J/kg °C (2)	420	510	600	

(1)=Soft annealed

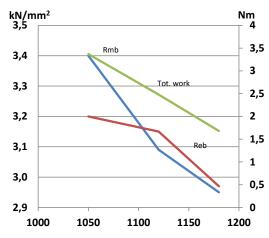

(2)=Hardened 1180°C and tempered 560°C, 3x1 hour

CCT CURVE



Continuous cooling transformation curve Hardening Temperature 1150°C

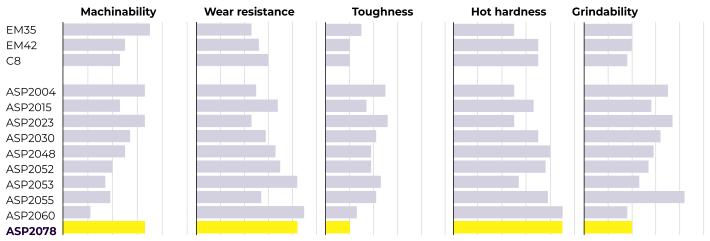
COMPRESSION YIELD STRESS



IMPACT TOUGHNESS

Original dimension \emptyset 101 mm Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH



Hardening Temperature in °C

Original dimension Ø 101 mm Tempering 3 x 1 hour at 560°C Dimensions of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

