Powder metallurgy HSS

CHEMICAL COMPOSITION

С	Cr	Мо	W	Со	V	Nb
1.69	4.0	4.6	6.3	9.0	3.2	2.1
					SAF	ETY DATA SHEET SDS: B

STANDARDS

• Not yet standardised

DELIVERY HARDNESS

- Typical soft annealed hardness is 320 HB
- Cold drawn and cold rolled material is typically 10-40 HB harder

DESCRIPTION

ASP®2055 is a high alloyed grade with a refined carbide structure for high demanding cutting tools and cold work applications like fine blanking requiring high hardness.

APPLICATIONS

- Hobs
- Taps
- Shaper cutters
- Cold work
- Broaches
- Fine blanking
- End mills

FORM SUPPLIED

- Peeled bars
- Drawn & Ground bars

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature (25°C) between temperings.

GUIDELINES FOR HARDENING

Tempering Temperature in °C Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

ASP®2055 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g /cm³ (1)	8.0	7.9	7.9
Modulus of elasticity kN/mm² (2)	240	214	192
Thermal expansion ratio per °C (2)	-	11.8x10 ⁻⁶	12.3x10 ⁻⁶
Thermal conductivity	24	28	27
Specific heat J/kg °C (2)	420	510	600

(1)=Soft annealed

(2)=Hardened 1180°C and tempered 560°C, 3x1 hour

IMPACT TOUGHNESS

Original dimension 9 x 12 mm Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH

950 1000 1050 1100 1150

Hardening Temperature in °C
Original dimension Ø 7.5 mm
Tempering 3 x 1 hour at 560°C
Dimension of test piece Ø 4.7 mm
Rmb = Ultimate bend strength in kN/mm²
Reb = Bend yield strength in kN/mm²
Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

COMPARATIVE PROPERTIES

