Powder metallurgy HSS

CHEMICAL COMPOSITION

С	Cr	Мо	W	Со	V
2.48	4. 2	3.1	4.2	-	8.0
					SAFETY DATA SHEET SDS: A

STANDARDS

Europe: HS 4-3-8

Germany: 1.3352

DELIVERY HARDNESS

Typical soft annealed hardness is 300 HB

Cold drawn and cold rolled material is typically 10-40 HB harder

DESCRIPTION

ASP®2053 is a high V-alloyed grade with excellent abrasive wear resistance and toughness.

APPLICATIONS

Cold work tools

Textile knives

Wood tools

Fine blanking

Paper cutting knives • Extrusion

Stamping

Rolls

Bi-metal saws

FORM SUPPLIED

Coils

Sheets

Round bars

Discs

Forged blanks

Flat & square bars

Available surface conditions: drawn, ground, peeled, rough machined, hot rolled.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature (25°C) between temperings.

GUIDELINES FOR HARDENING

Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

ASP®2053 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g /cm³ (1)	7.7	7.6	7.5
Modulus of elasticity kN/mm² (2)	250	220	200
Thermal expansion ratio per °C (2)	-	11.1x10 ⁻⁶	11.7×10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg °C (2)	420	510	600

(1) = Soft annealed

(2) = Hardened 1180°C and tempered 560°C, 3x1 hour

CCT CURVE

Continuous cooling transformation curve Hardening Temperature 1180°C

COMPRESSION YIELD STRESS

IMPACT TOUGHNESS

Hardening temperature in °C Original dimension Ø 16 mm Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH

Tempering 3 x 1 hour at 560°C Dimension of test piece Ø 4.7 mm

Rmb = Ultimate bend strength in kN/mm² Reb = Bend yield strength in kN/mm² Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

