Powder metallurgy HSS

CHEMICAL COMPOSITION

С	Cr	Мо	W	Со	V
1.27	4.0	3.6	9.5	10.0	3.2

SAFETY DATA SHEET SDS: B

STANDARDS

• Europe: HS 10-4-3-10

USA: AISI M51Germany: 1.3207

France: AFNOR Z130WKCDV10.10.4.4.3

Sweden: SS 2736Japan: JIS SKH57

DELIVERY HARDNESS

• Typical soft annealed hardness is 280 HB

• Cold drawn material is typically 10-40 HB harder

DESCRIPTION

ASP®2051 is a tungsten powder metallurgy high speed steel containing 10 percent cobalt. ASP®2051 is harder than many high speed steels and in addition it has a good toughness. ASP®2051 is used mainly for tools requiring maximum abrasion resistance and medium toughness.

APPLICATIONS

- Toolbits
- Milling cutters
- Form tools
- Bandsaws
- Cold work tools

FORM SUPPLIED

• Bimetal edge

Available surface condition: Cold rolled.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C per hour down to 700°C, then air cooling.
- Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with pre-heating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- 3 tempers at 560°C are recommended with at least 1 hour holding time each time.

GUIDELINES FOR HARDENING

Hardness after hardening, quenching and tempering 3 x 1 hour

PROCESSING

ASP®2051 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

During grinding, local heating of the surface, which can alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g /cm³ (1)	8.2	8.1	8,1
Modulus of elasticity kN/mm² (2)	240	215	190
Thermal expansion ratio per °C (2)	-	10.2x10 ⁻⁶	10.9x10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg °C (2)	420	510	600

((1)=Soft annealed (2)=Hardened 1180°C and tempered 560°C, 3x1 hour

IMPACT TOUGHNESS

Hardening temperature in °C Tempering 3 x 1 hour at 560° C Unnotched test piece 7 x 10 x 55 mm

4-POINT BEND STRENGTH

Original dimension Ø 6 mm
Tempering 3 x 1 hour at 560°C
Dimension of test piece Ø 4,7 mm
Rmb = Ultimate bend strength in kN/mm²
Reb = Bend yield strength in kN/mm²
Tot. work = Total work in Nm

COMPARATIVE PROPERTIES

