Powder metallurgy HSS

CHEMICAL COMPOSITION

С	Cr	Мо	W	V
1.40	4.2	5.0	5.8	4.1
				SAFETY DATA SHEET SDS: A

STANDARDS

- Europe: HS 6-5-4
- Germany: 1.3361

DELIVERY HARDNESS

- Typical soft annealed hardness is 265 HB.
- Cold drawn material is typically 10-40 HB harder.

DESCRIPTION

ASP®2004 is a high vanadium alloyed grade with high wear resistance and toughness suitable for cold work applications.

APPLICATIONS

- Punches
- Milling cutters
- Dies
- Taps
- Rolls
- Broaches
- Rotating multi-edge cutting tools

FORM SUPPLIED

- Coils
- Forged blanks
- Flat & square bars
- Round bars

Available surface conditions: drawn, ground, hot worked, peeled, rough machined, hot rolled.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling at 10°C/h down to 700°C, then air cooling.
- Stress-relieving at 600-700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with preheating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness. Cooling down to 40-50°C.
- Tempering at 560°C three times for at least 1 hour each time. Cooling to room temperature (25°C) between temperings.

GUIDELINES FOR HARDENING

Hardness after hardening, quenching and tempering 3x1 hour

PROCESSING

ASP®2004 can be worked as follows:

- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

During grinding, local heating of the surface, which may alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.

PROPERTIES

PHYSICAL PROPERTIES

Temperature	20°C	400°C	600°C
Density g /cm³ (1)	8.0	7.9	7.8
Modulus of elasticity kN/mm² (2)	240	214	192
Thermal expansion ratio per °C (2)	-	12.1x10 ⁻⁶	12.7x10 ⁻⁶
Thermal conductivity W/m°C (2)	24	28	27
Specific heat J/kg °C (2)	420	510	600

(1)=Soft annealed

(2)=Hardened 1180°C and tempered 560°C, 3x1 hour

IMPACT TOUGHNESS

Original dimension Ø14 mm Tempering 3x1 hour at 560° C Unnotched test piece 7x10x55 mm

4-POINT BEND STRENGTH

Hardening Temperature in °C
Original dimension Ø 6 mm
Tempering 3 x 1 hour at 560°C
Dimension of test piece Ø 4.7 mm
Rmb = Ultimate bend strength in kN/mm²
Reb = Bend yield strength in kN/mm²
Tot. work = Total work in Nm

COMPRESSION YIELD STRESS

COMPARATIVE PROPERTIES

