E M35

High speed steel

CHEMICAL COMPOSITION

<table>
<thead>
<tr>
<th>C</th>
<th>Cr</th>
<th>Mo</th>
<th>W</th>
<th>Co</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.93</td>
<td>4.2</td>
<td>5.0</td>
<td>6.4</td>
<td>4.8</td>
<td>1.8</td>
</tr>
</tbody>
</table>

STANDARDS

- Europe: HS 6-5-2-5
- Germany: 1.3243
- France: AFNOR Z90WDKC
- Japan: JIS SKH55
- USA: AISI M35
- Sweden: SS2723
- UK: BM35

DELIVERY HARDNESS

- Typical soft annealed hardness is 260 HB
- Cold drawn and cold rolled material is typically 10-40 HB harder

DESCRIPTION

E M35 contains cobalt for increased hot hardness. The composition of E M35 offers a good combination of toughness and hardness. E M35 has a good machinability.

APPLICATIONS

- Reamers
- Milling cutters
- End mills
- Cutters
- Hobs
- Broaches
- Saws
- Cold work

FORM SUPPLIED

- Wire rod
- Drawn wire
- Round bars
- Flat bars
- Square bars
- Strips
- Sheets
- Discs

Available surface conditions: drawn, ground, rolled, hot rolled, cold rolled, peeled, turned.

HEAT TREATMENT

- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C per hour down to 700°C, then air cooling.
- Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with pre-heating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness.
- 2 tempers at 560°C are recommended with at least 1 hour holding time each time.

PROCESSING

E M35 can be worked as follows:
- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING

During grinding, local heating of the surface, which can alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT

The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.
PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>20°C</th>
<th>400°C</th>
<th>600°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density g/cm³</td>
<td>8.1</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Modulus of elasticity kN/mm²</td>
<td>230</td>
<td>205</td>
<td>184</td>
</tr>
<tr>
<td>Thermal expansion ratio per °C</td>
<td>-</td>
<td>11.6x10⁻⁶</td>
<td>11.9x10⁻⁶</td>
</tr>
<tr>
<td>Thermal conductivity W/m°C</td>
<td>24</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Specific heat J/kg °C</td>
<td>420</td>
<td>510</td>
<td>600</td>
</tr>
</tbody>
</table>

IMPACT TOUGHNESS

<table>
<thead>
<tr>
<th>Property</th>
<th>Nm</th>
<th>HRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardness</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4-POINT BEND STRENGTH

- **Rmb** = Ultimate bend strength in kN/mm²
- **Reb** = Bend yield strength in kN/mm²
- **Tot. work** = Total work in Nm

SAFETY DATA SHEET

SDS: B

COMPARATIVE PROPERTIES

- **Machinability**
- **Wear resistance**
- **Toughness**
- **Hot hardness**
- **Grindability**