E M2
High speed steel

CHEMICAL COMPOSITION

<table>
<thead>
<tr>
<th>C</th>
<th>Cr</th>
<th>Mo</th>
<th>W</th>
<th>Co</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.90*</td>
<td>4.2</td>
<td>5.0</td>
<td>6.4</td>
<td>-</td>
<td>1.8</td>
</tr>
</tbody>
</table>

* 0.85 for strips

STANDARDS
- Europe: HS 6-5-2
- Germany: 1.3343
- France: AFNOR Z85WDCV6.5.4.2
- Japan: JIS SKH51
- USA: AISI M2
- Sweden: SS 2722
- UK: BM2

DELIVERY HARDNESS
- Typical soft annealed hardness is 250 HB
- Cold drawn and cold rolled material is typically 10-40 HB harder

DESCRIPTION
E M2 is a medium-alloyed high speed steel which has a good machinability and a good performance and is used in a wide variety of applications.

APPLICATIONS
- Twist drills
- Reamers
- Milling cutters
- Taps & dies
- Broaches
- Knives
- Saws
- Cold work tools

FORM SUPPLIED
- Drawn wire
- Wire rod
- Round bars
- Flat bars
- Square bars
- Strips
- Sheets
- Discs
- Bi-metal edges

Available surface conditions: drawn, ground, hot rolled, cold rolled, peeled, turned.

HEAT TREATMENT
- Soft annealing in a protective atmosphere at 850-900°C for 3 hours, followed by slow cooling 10°C per hour down to 700°C, then air cooling.
- Stress-relieving at 600°C to 700°C for approximately 2 hours, slow cooling down to 500°C.
- Hardening in a protective atmosphere with pre-heating in 2 steps at 450-500°C and 850-900°C and austenitising at a temperature suitable for chosen working hardness.
- 2 tempers at 560°C are recommended with at least 1 hour holding time each time.

PROCESSING
E M2 can be worked as follows:
- machining (grinding, turning, milling)
- polishing
- hot forming
- electrical discharge machining
- welding (special procedure including preheating and filler materials of base material composition).

GRINDING
During grinding, local heating of the surface, which can alter the temper, must be avoided. Grinding wheel manufacturers can provide advice on the choice of grinding wheels.

SURFACE TREATMENT
The steel grade is a perfect substrate material for PVD coating. If nitriding is requested, a small diffusion zone is recommended but avoid compound and oxidized layers.
PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th></th>
<th>Temperature 20°C</th>
<th>Temperature 400°C</th>
<th>Temperature 600°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density g/cm³</td>
<td>8.1</td>
<td>8.1</td>
<td>8.0</td>
</tr>
<tr>
<td>Modulus of elasticity kN/mm²</td>
<td>225</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>Thermal expansion ratio per °C</td>
<td>-</td>
<td>12.1 x 10⁻⁶</td>
<td>12.6 x 10⁻⁶</td>
</tr>
<tr>
<td>Thermal conductivity W/m°C</td>
<td>24</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Specific heat J/kg °C</td>
<td>420</td>
<td>510</td>
<td>600</td>
</tr>
</tbody>
</table>

IMPACT TOUGHNESS

![Impact Toughness Graph]

- **Impact energy**
- **HRC**
- **Nm**

4-POINT BEND STRENGTH

![Bend Strength Graph]

- **Rmb** = Ultimate bend strength in kN/mm²
- **Reb** = Bend yield strength in kN/mm²
- **Tot. work** = Total work in Nm

SAFETY DATA SHEET

SDS: A

COMPARATIVE PROPERTIES

<table>
<thead>
<tr>
<th>Machinability</th>
<th>Wear resistance</th>
<th>Toughness</th>
<th>Hot hardness</th>
<th>Grindability</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCIII</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E 945</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E M35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E M42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E T1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP® 2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP® 2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP® 2051</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP® 2053</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASP® 2060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The above is for information only and does not create any binding contractual obligations.